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Robustness and perturbation in the modeled cascade heart rate variability
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In this study, numerical experiments are conducted to examine the robustness of using cascade to describe
the multifractal heart rate variabilittHRV) by perturbing the hierarchical time scale structure and the multi-
plicative rule of the cascade. It is shown that a rigid structure of the multiple time scales is not essential for the
multifractal scaling in healthy HRV. So long as there exists a tree structure for the multiplication to take place,

a multifractal HRV and related properties can be captured by using the cascade. But the perturbation of the
multiplicative rule can lead to a qualitative change. In particular, a multifractal to monofractal HRV transition
can result after the product law is perturbed to an additive one at the fast time scale. We suggest that this
explains the similar HRV scaling transition in the parasympathetic nervous system blockade.
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[. INTRODUCTION encouraging result from the cascade model implies a multi-
plicative interaction in the autonomic heart rate controls.
The dynamics of the cardiovascular regulation is highlySimilar phenomenology in natural systems, such as turbu-
irregular in most physiological conditions, a phenomenon€nce[15], network traffic[16], and market dynamicfl7]
commonly referred to as the heart rate variabiliyRV). further suggests the product law may exist on a more general
Captured in the interbeat time RR intenv@Ri) (interbeat 9round. . -
time is defined by the timespan of the successive R waves i{}] Autonomic nervous system blockade is sufficient to alter

; ; e multifractal HRV in a fundamental way. It was shown a
the electrocardiogramHRYV reveals mostly the fluctuating : - .
autonomicity at the sinoatrial node. This fluctuation is be_mulnfractal to monofractal transitiofMMFT) in the para

lieved to give rise to dractal componenbf HRV that con- sympathetic nervous SysteNS blockade, but not in sym-

- . . L pathetic nervous systei®NS blockade[11]; see also Ref.
tributes to the Ti-like RRi power spectruril-5]. Similar to 12]. Because of the health implication of reduced HRYV, it is

other 1f phenomena in nature, the fractal component of,|5,sihle MMFT may also describe the transition to heart
HRV represents a very robust feature that has been observegsease in such pathologic state as congestive heart failure
in different body position$1,2], the times of day3], and the  \yhere there is an elevated sympathetic drive and PNS with-
health conditiong2,4]. While its physiological origin and drawal[2,4,13.
purpose remain largely unknown, the fractal HRV has drawn To further the cascade theory of HRYV, it is necessary to
much interest in recent years for a number of reasons. Firstonsider different model configurations and HRV in other
in healthy humans, the fLpower can reach 70 to 90% of the physiological conditions. This paper presents the research
total RRi signal powei1,2,4]. Furthermore, experimental results on these issues. Specifically, we focus on the robust-
data suggest potential clinical relevance as a diminishingiess of multifractal and the cause of MMFT by perturbing
fractal component was found to correlate well with a higherthe cascade. There is a twofold objective for these investiga-
mortality rate in certain heart disease conditipp,6]. Al- tions. The first is related to the proposition of cascade HRV
though such a correlation has only been systematically estalitself. Granted the product law is a logical framework by
lished for short-term HRYV, fractal scalings in long-term re- which the multifractal HRV can be explained, discrete cas-
cordings (~10° beats) are known to be qualitatively cades are artificial in nature and lack the motivation in real
different for healthy and diseased populatidpis-10]. physical or physiological terms. The study of the robust mul-
Recent studies indicated that the scaling in healthy RRi igifractal generation is an attempt to address this modeling
in fact highly nonuniform. The possibility of a multifractal issue. Our goal is to relax the artificiality in cascade and to
HRV was thus raised8—10], and tested with encouraging test the limit of using the cascade paradigm to describe HRV.
results by using discrete multiplicative random cascadeSpecifically, numerical experiments will be conducted to per-
[9,10]. Using the cascade to model heart rate regulation proturb the hierarchical time scale structure and the multiplica-
vides an interesting contrast to the general notion of feedtive rule of the cascade to test the persistence of multifractal
back which functions on the basis of additive law. A possiblescaling. We will show that the arrangement of the multiple
explanation for this result is that complex biological func- time scales in the discrete random cascade is not an essential
tions such as regulating the heart rate are achieved via thfactor. This result attests the omnipresence of multifractal
interaction of a large number of control mechanisms over abjects in diverse physical systems in general, and lends
wide range of scales. Hence, one or few isolated reflexes ateope for the physical basis of cascade HRV in particular. The
not sufficient to capture the overall complexity. For example study of the “unstable” multifractal generation leads to the
the reduction of baroreflex sensitivity and its recovery dy-second objective of the numerical study; namely, finding the
namics in prolong bed rest test exhibit qualitatively very dif- cause of MMFT in the context of cascade. We will show that
ferent property from the long term HRV. Thus, baroreflexthe random perturbations of the product rule into an additive
alone is insufficient to describe the complex HRMI]. The  one is sufficient to cause MMFT. It supports the early sug-
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gestion that an additive law manifested by one or a few feed- -1 - -
back mechanisms may not be sufficient to characterize com
plex biological functions such as regulating the heart rate.
This paper is organized into four sections. In Sec. Il, we
provide an overview for cascade HRV. We will demonstrate
how cascade parameters can be extracted from RRi and con
pare the simulation results with experimental data. Certain -2
technical issues related to the estimation of multifractal will
also be addressed. In Sec. Ill, cascade perturbations are co«~
ducted to test the persistence and destruction of multifractal‘g
The concluding remarks are given in Sec. V.

log,

II. CASCADE HRV

The structure of the discrete random cascade can gene
ally be put in the framework of positive martingale theory
[18]. For numerical study, the construction of the cascade is
defined by three basic elemerits the (multiplicative) data
generation rule(b) the probability law for the cascade com-  ~4f
ponent, andc) the branching rule. The cascade HRV pro-

poses that the fractal component of HRV is a result of the log, )
product ofJ+ 1 random variable®; which we call cascade
components FIG. 1. log({Ay(r)?)°9) vs log(7) based on real RRi data from

DB1 ({0) and DB2(O). The heavy solid line is the overall average.
J The power law forg; is estimated witha=0.126 and log(ag)
()= H (1), (1) f—l.@ (at the intercept W|.th the axis a.tJ=1.5). Thg thin solid
j=0 line is the corresponding regression line given by 1.6
+0.126 log(7).
wherew;(t)=1+¢; and¢;, j=0,...,] are independertin j)
random variables withi£;)=0, (£&:)= ;.07 (8 is the  log,(o;)~—1.6 (the intercept of the regression line at the
Kronecker delta Equation(1) defines the data generation largest r value can be estimated. Using this method, the
rule (a) and describes the mechanism for data fluctuation iryenerated cascade can mimic the experimental RRi property
the cascade. Gaussian(t)’s will be used through out this very well (Fig. 2). Note also from Fig. 1 that there appears to
study since the outcome of our results does not vary senshave a second range in<2* with the estimatedx~0.43.
tively on this choice. Eaclw(t) is set to vary at the integer This value corresponds to a scaling exponent86 for the
times {t{’ k,j e N}, oj(t)=w;(t{) for tP<t<t{),. The  power law spectrum, which is close to that of a Brownian
time sets{t{’}, j=0,...,), define the branching rulee) and  motion and which reminds us of the “cross-over” phenom-

the multiple time scales in the cascade. enon or double scaling in the literature of long-term HRV
The hypothesis of cascade HRV has led to an effectivé?].
modeling strategy for HRV. Assuming a Gausslaounded The multifractal analysis of the dyadic cascade HRV was

cascade with a dyadic branching rul{é)=k51, k=0,...,2 conducted based on the moment of the absolute increment.
and 6;=2""1, HRV in health[9,10] and in autonomic ner- Forr;(t), we formedS;(7,q) =(|Ary(7)|9), whereAr;(7)

vous system blockaded0] have been successfully simu- =Fy(t+7)—ry(t) [9,10. It can be shown thatS,(,q)
lated. Assuming a bounded cascade is based on the electro-7"'? in large 7 where y(q) is defined by

physiology of the heart muscle cells, which dictates a

bounded RRi. Lettingrj=co2 *0"Y~5, j=1,..), as- i a I J q
sures a bounden;(t) in the J— limit [10]; see also Ref. H w;(t) H w(t+7)— H w;(t) ~5j‘/(q).
[19]. =1 i=j+1 i=j+1

For largeJ, the estimation ofx can be made by the log 2)

increment of the actual RRi datgt): Ay(7,t)=Ilog,[r(t

+7)]—log]r(t)]. It can be shown thatAy(r,t)%)~ 729, If the varianceo; of the cascade component decays suffi-
where the angle brackets denote the statistical average ovegiently fast, the cascade in higher generations is approxi-
(Appendix A). Figure 1 shows the average(:{Ay2> from mately additive. As a result, a second scaling can emerge
two databases: the fir€bB1) consists of 10 sets of daytime from the model in smallz. Sy(7,q)~ 7% (Appendix B.

RRi recording of normal sinus rhythm from healthy young Hence, the “cross-over” phenomenon mentioned above can
adults and the secon@®B?2) consists of 18 sets of daytime be modeled by using two decay rates, i.e., ferd<J and

RRi of normal sinus rhythm downloaded from the public a;<a,, one in I<j<p with aj=002‘“1(1‘1) and one in
domain physionet[20]. A scaling range for the group- p<j<J with 012002*“2(1*1) In this casesS;(,q)~ 724
averaged(Ay?) is found in 7>2*% beats anda~0.126, for 7<2P andS,(7,q)~ @ for 7>2P (Fig. 3.
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FIG. 2. Comparison between experimental and numerita)
function and increment PDIa) log,({(Ay(7)2)°%%) vs log,(7) from a
typical data set in DB2ZO) and the linear fit of the power lay+):
logy({Ay(7)2)%%) = —2.5-0.13 log(7). (b) Experimental(O) and
numerical (—) £(q)s. (c) Experimental(O) and numerical incre-
ment PDF(—) (n=Ar; or Ar). For better comparisorf,(Ar) is
rescaled horizontally and vertically by arbitrary factégsand 1f,
respectively(d) The multifractal spectrur® (h) of the experimen-
tal data(based on the Legendre transfof(h) =mingh—{(q)
+1]). The numerical result is averaged over 100 samples;(d)
with log,(0;)=—2.5-0.13( —1). Vertical bars ag=1,...,.5 show
the standard error of the statistic.

For higher order momerg>1, the dyadic bounded cas-

cade predictsS;(7,q)~ 7 and {(q) =1. However, this prop-

PHYSICAL REVIEW &7, 031914 (2003

D(h)=min[gh—¢(q)+1].
q

It is known, for monofractal, thag(q) =qH describes a lin-
ear law and, for multifractal, a qualitatively different nonlin-
earZ(q) with £(q)”<0 resultg23]. The typical multifractal
spectrum for daytime HRV of a healthy young adult is shown
in Fig. 2(c) for g>0. Notice the maximun® (h) is reached
for h~0.15.

To conclude this section, we would like to discuss some
technical issues related to usirgy(7,q) for multifractal
analysis. In the context of fluid turbulencg;(7,q) is noth-
ing but the structure function of the absolute velocity incre-
ment. Although it was widely used in the past, the structure
function is known to diverge foq<<0 since the probability
at zero increment does not vanish. Moreover, as Metzgl.
pointed out, the structure function approach is limited in the
range he (0,h*), whereh*=1—-[1-D(h*)]/D’'(h*)<1
[21]. This upper bound exists when nmigxh,)] occurs at
some h,,>1. If h,<1, the accessible range becomies
€(0,1) for allg>0 if and only if there is no negative sin-
gularity. If there exists &+ >0 whereh(q)<0, g>g«, and
h,<1, the accessible range is further restrictedqtoqx
(when (q) begins to bend downwardd£(q)/dq<0]). As
shown in Fig. 2c), the typical range for long-term HRV is
h<1. Then, the potential concern lies in the negativ&\Ve
did observeddZ(q)/dq<0 in the higher order momentg (
>5) from some daytime RRi data, and more often in night-
time RRi. For this reason, the multifractal scaling in lage
has not been resolved by using this approach in the past
[9,10]. Nevertheless, the qualitative feature of a nonlinear
£(q) is already revealed for smajlandS;(7,q) will be used

erty is difficult to verify from RRi due to the insufficient data for the purpose of this study.

length.

The estimated(q) allows further calculations of the mul-

tifractal spectrum. Lelh={(q)' =d{(q)/dg which measures

the so-called singularity strength. The “size” of the set of

increments for a givem, or its Hausdorff dimensio® (h),
can be related tg(q) via a Legendre transforii21,22

Ill. PERTURBED RANDOM CASCADE

Although the discrete cascade proposed in the past has
been effective for modeling the fractal property of HRV, it is
nonetheless artificial and therefore lacks the motivation in
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FIG. 3. Doubling scaling 08,(7,q). (&) logy(oj)=—1.6—0.126( — 1), 0<j<p and log(o;)=—2.6-0.35( — 1), p<j<J andp=9.
The solid lines show the slope 6f0.126 and-0.35, respectivelyb) A typical S;(7,q) and the two scaling intervals; ={7,log,(7)<7} and
I,={rlogy)(7)>7}. (¢) £(q) estimated from scaling intervd] (O) andl, (). They are averaged based on 1) simulated using the,
described if@). The saturation of(q)~ 1 estimated iri; (O) is an effect of the bounded cascade. The solid line indicates the slope of 0.35.
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FIG. 4. Representative branching configurations for perturbed 0 1 2 3 4 5
cascades. Only the fir§t=0,1,...,5 are shown from bottom to top d

(the Oth generation is the initial conditipr(a) time scale ¢;) per- FIG. 5. Scaling in the perturbed cascades with configurations
turbation as described by E3), (b) mixed dyadic C=2) and given in Fig. 4. Averaged(q) based on Fig. @) are shown a©
triadic (C=3) branchings(c) mixed-type branching with 25% of ¢, 3=0.4 andA for a=0.8[see Eq(1)]. Averaged(q) based on
{td} coincides with those of the dyadic cascade, afdmixed-  Fig. 4(b) are shown a&l for 80% dyadic, 20% triadic branchings,
type branching with 0% oft{’} coincides with those of the dyadic and ¢ for 50% dyadic, 50% triadic branchings. Averagett)
cascade. based on Fig. &) is shown ast. Averaged/(q) based on Fig. 4d

is shown as«. All ¢(q)’s are averaged from 100 samplesrgft)
real physical and physiological terms. For example, havingising log(c;)=—1.6—-0.126( —1) and J=15. The control with
wj(t) fluctuating precisely at the dyadic times is certainly ant{’=ks; is shown as the solid line with one standard deviation.
artificial “constraint.” To test the robustness of the cascade-

generated multifractal and MMFT, the elemef@s and () that the perturbed(p,q)’s are almost indistinguishable from
of the above are perturbed. The scaling of the perturb@d  the control(Fig. 6). In a similar case studied by Falconer, the
will be examined by using(q). In what follows, the dyadic  multifractal spectrum was proven invariant for identically
cascadgti(j) =kd;] with @~0.126 and logog)~—1.6 €s-  distributed G(j) =[f(r;.1(t)/r;(t)),u(7j+1)/u(7;)] where
timated from Fig. 1 will be used to generate tuntrolin all  f(.) denotes the probability density function apdis the

comparisons. Lebesgue measure of the Borel sets on the real #d¢ For
independentv;(t), the identicalj(j) implies identically dis-
A. Perturbation of the branching rule tributed w;(t). Arbeiter showed a similar result for the ran-

dom scale perturbation by using gaussian distribuf.

The current results are differed from these past studies be-

cause the cascade componeafét) in the bounded cascade
7,=(0.5+au)s;, 3) are not |dent|cal!y distributed. _ . _ .

In the branching rule perturbation, the intervals in neigh-
where U is an uniformly distributed random variable in POring generations are met at }h)e end p(?ﬂt)s i.e., for some
(—0.5, 0.9 andae[0,1]. In the simulation, #{’}=2/ js  C>0, the common elements "’} and{t,;" "’}:
the same as the dyadic cascade. Also, the end points of the o ,
parent interval were kept in the offspring’s, i.e8, Y=t to =t (4)

[Fig. 4(a)]. This establishes the “standard” dyadic configu-

ration except the perturbed interval length. $6#0 de-  are determined bl’ = Ck. For exampleC=2 applies to the
scribes a random scale scenario. Tfg)'s averaged from dyadic cascade with$, D=t{), k=1,..,2. Perturbations
100 samples ofr (t) with a=0.4,0.8 show qualitatively on C implies a mixed branching rule where tké, k in Eq.
similar shapes as the contr@lig. 5. When plottingS;(7,q) (4) do not commit to any fixed relationship. Different per-
versusS;(7,p) against each other on the logarithmic scalesturbed configurations are considered in Fig&)4and 4c).
which is equivalent to assuming an extended self-similarityFigure 4b) describes a mixed dyadic and triadic branching
in the turbulence analogy of HR\8], a power law relation- rule. In this caseC=2 andC=3 are used in randomly se-
ship can again be found. The corresponding power law extected intervals with prescribed probabilitieee Fig. 5 cap-
ponentz, , is given by {(p)/{(q). It is interesting to note tion). Figures 4c) and 4d) describe the more general case of

In general, consider;=t{!) ,—t{). Figure 4a) shows the
cascade configuration aftef is perturbed using

031914-4



ROBUSTNESS AND PERTURBATION IN THE MODELED. . .. PHYSICAL REVIEW &7, 031914 (2003

IIWWWWHFHMMW Il

s - - ' - - I

(@

10*t

43

|II[H]H]{IMIIIIII IIIII]I‘IIIIIIPIIPI‘IIIIWII'IIII
05+ .
. . b
0 1 2 3
% 1 2 3 4 5 10t
q r : ;
Illllllqﬂl}lﬂil IIII’]]]]qHII I 1
FIG. 6. Normalizedz, 3= ¢(q)/{(3) for all cases shown in Fig.
5. Notice the similar curvatures in all cases.

a randomC e N with only the constraianszZj, where
N;=#{t{’}. In this case, we are interested in perturbing the
branching rule from the dyadic case=2. Shown in Figs.
4(c) and 4d) are the perturbed configurations with, respec- ; . L © L
tively, 25 and 0% of the{’ remaining at the branch points

of the dyadic cascadeC=2 andb=3). Averaged{(q)<s

in these cases again show similar shapes as the cdRigsl. FIG. 7. Representative cascade configurations for perturbed data
5 and 6. It is thus evident that a stable multifractal genera-generation rule. Only the fir§t=0,...,.8 generations are shown from
tion persists regardless of the branching rule perturbation, seottom to top(the Oth generation is the initial conditipria) UP, (b)

|ong as some type of branching mechanism exists to pro\/idgsp, anc(c) LSP; see text for more details. Only the intervals where
the structure for multiplication. Clearly, the branching rule the multiplicative data generation rul@) is used are shown.
perturbation is not sufficient for MMFT.

10*t

largej in the higher generation of the cascdféay. 7(b)], and
large scale perturbatioh.SP) with D=Dy(J—j), where the
criterion is less likely passed for smalin the lower genera-
Replacing the multiplicative rulf(c) abovg by an addi- tion of the cascadgFig. 7(c)].
tive one can typically lead to the fractal transition reported in  Since the purpose for the branching rule of the cascade is
HRV under autonomic blockade. Such a perturbation is moto provide the structure for the multiplication, it is indirectly
tivated by the conjecture that feedbacks using additive lawperturbed by Eq(5). As a result, the branching process from
are not sufficient to describe the integration of a large numene generation to the next can be viewed as containing
ber of controls in the autonomic heart rate regulation. It is*holes” wherein the product rule does not apply. The(t)
further motivated by the fact that addiag(t) with decaying  used in Eq.(5) has mainly the purpose to introduce a noise
variance on the dyadic tree can lead to monofractal scalingerm in the additive process. Using the samt) helps to

B. Perturbation of the product rule

[9]. To perturb the product rule, EQL) is replaced by make an easier comparison with the control. Other uncorre-
lated gaussian noise will lead to qualitatively similar results
ri(t)=rj_(t)+ w;(t) () given below.

) For UP and SSP, the perturbed(q) and zys
for t in randomly selected subset fif}. This is conducted = ¢(q)/¢(3) are given in Figs. 8 and 9, respectively. It is
by first making a random draB uniformly in [1] to deter- evident that a linear trend df(q) can be developed by the
mine such random intervals. The multiplicative rylB is  product rule perturbation, which implies MMFT. A closer
applied if the criteriorB>D is satisfied, otherwise, E) is  look indicates the cause of this qualitative change lies in the
used. We tested three cases: uniform perturbatié®) with  perturbation of the product rule in the fast time scale. For
a constanD =Dy, [Fig. 7(a)], small scale perturbatiofS8SP  SSP, a lineat(q) is clearly seen. For UP, increasiby, also
with D=D,j, where the criterion is less likely passed for results in aZ(q) of a smaller curvaturémore lineay. How-
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08 - - - - y since PNS and SNS can be characterized by the fast and slow
dynamics in the RRi fluctuatiof2,4,11]. It implies, in the
framework of bounded cascade, that MMFT is likely caused
by the perturbation of the data generation rule from a multi-

plicative to an additive one.
0.6

IV. CONCLUSION

In this study, we showed that multifractal scaling is a
robust feature and can be generated by using fairly general
types of branching process. Qualitatively change can result
from perturbing the multiplicative data generation rule into
an additive one. MMFT in HRV under PNS blockade was
successfully reproduced by this perturbation. We showed in
i the past that the hierarchical time scale structure of the cas-
cade provides a consistent framework to model the PNS and
SNS influences on HRY10]. As a result, MMFT has also
been simulated by “turning off” the small time scale genera-

4 tions of the cascade. It was found, on the dyadic times, that
0 - - . . . the construction of such a truncated cascade mimics that of a
q Brownian particle’s, which is known to exhibit monofractal
scaling. The random perturbation studied in ES). repre-

FIG. 8. Scaling in dyadic cascades with perturbed data generasents a more general scenario leading to MMFT.
tion rule described in F|g 7, see also Ea) in text. (a) g(q) for |n a Serles Of papers' Carlson and Dom) developed
UP, D=0.05 (—+—), Do=0.3 (—*—); {(q) for SSP,Do 3 new theory for the so-called complex systE26]. These
=0.03(—A—); £(q) for LSP,D(=0.03(O). The control is shown g ;ihors examined a wide range of physical, biological, and
as the heavy line with one standard deviation.Ath) are averaged o qineering systems and observed that the so-called complex
from 100 samples_ ofry(t) using tﬁ].):kéj ’ log?(“i)::l'e systems are heterogeneous in nature and often exhibit robust
(_—O éZi@) :J;Zlgagig;)is;glzg—sohggi |1$) ;h: djsfisfdbrom feature in the “design-for” environment. Such systems can

J ' ) : be fragile under unanticipated perturbation. The emphases on
the weakness and “design” of complex systems separate
CD’s complexity theory from ideas in statistical physics. The
break-down of the robustness was suggested as “design
aw” which may be due to a biased training process in the
volution. Introducing heterogeneity to cascade via the
. . . . . branching rule perturbation brings the cascade HRV model
closer to CD’s complex systems. A robust multifractal gen-
eration under the branching rule perturbation suggests a
similar type of robustness observed in other complex sys-
tems. If this comparison is correct, PNS blockade and its
health implication due to “weakening” HRY12,13 should
indicate a “design flaw” in the human cardiovascular sys-
tem. We hope the current study could provide the motivation
. for interdisciplinary efforts to further the understanding of
HRV.

&a)
[=)
5

0.2F

ever, for LSP, the perturbef(q) is nonlinear in shape and is
qualitatively similar to the controlFig. 8. The MMFT ob-
served in PNS blockade and minor deviation of the HRVI
scaling in SNS blockade are consistent to the current finding{é
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APPENDIX A

0 . s . s s To extracta, we focus on the time averaged statistics
0 1 2 3 4 5 since an ensemble average is hard to define in practice. We
first define the log incrementy;(r,t)=log)[r (t+ 7]

FIG. 9. Normalizedz, 3= £(q)/(3) for all cases shown in Fig. —logy[r,(t)] for integersr, t. Assuming dyadic scale and let
8. Notice the similar curvatures in all cases. 7=y, the pth order moment of/; (p>0) is given by
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p

1 1
m%’;)NNZ YJ(5kvt)p:NZ 2 pi(dic:t)| , (A1)
where
B o;(t+d,)
pj(5k,t)—|092(w : (A2)
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=02 07D [8]. In general, it can be written
J—v—1

Sy(7,q)= EO Pol| Dy,

n=

(B1)

whereP,=2"7/(27— 1), 7=2" and{|Dw,|9) is defined by
Eq. (2). The power law scaling in EqB1) only holds for

large 7 [9]. The purpose of this Appendix is to show that a
Note thatp(dy,t) can vanish depending on the valuestof second scaling will emerge in smatl if the variancea;
S andj. Let T(kj)z{t;a)j(t+ 8)# wj(t)}. It can be shown decays sufficiently fast. As a result, if there are two decay
that T{) consists of disjoint segments, each associated with &tes foro;, the dyadic cascade is able to exhibit double

different p( 5 ,t) value. For a giverk, it can be showrT{’

for j<k consists of 2—1 such segments, each of which

contains d, points, andT{) for j>k consists of 2—2X
segments, each of which contai points. Thus,|T{)|
=(21-1)x§ for j<k and (2—21"¥)x §, for j>k.

The second moment of the log-increment process is suf-

ficient to provide the first order approximation af Since

scaling observed isomeexperimental datf7].
Consideringo;<0 for j=p and 1<p<J, it can be
shown that

p-1 J

11 o

=1

q q

|Dawp |9~ (B2)

A¢;
+1

j=n

&’s are normal random variables with zero mean andor independend;’s,

(&j¢;)= 6ij;, the contribution from th¢th cascade compo-
nent to the second moment can be written as

1 & 2 1 2
= [pi(8,01P== 2 [pi(8c,)]
Nt=1 NteT(k”
T/ (e ]
TN\ [0%lTrg )| ) @Y

Substituting Eq(A3) and|T{| into (A1) and retaining only
the second order terms, one has

TV , o5 [2(1-2 1-272k

|
(2) _ -
Mo 2; N 721D, D,
—2ak_2—2a.]
+(2-1) } (A4)
D,

whereu=1—2a, D;=1-2" andD,=1—2"2%, It can be
seen thatD;——1, D,—0 as a—0. Hence, for smally,
D,/D;~0. Now, assuming 2>48>1, it can be shown
m{)~ 55, which impliesa can be estimated by linear re-

gression in the middle range scales.

APPENDIX B

The power lawS;(7,q) of the dyadic bounded cascade significantly

has been shown in the past based on the variancesiaw

p—1
11 o,
=1

|

q
> Na.gp—l)qZ—(p—l)(p—Z)aqlz (B3)

and

J

> A¢g

j=n+1

272an_272aJ
1z

|

Taking the statistical average of E@®2) with Egs.(B3) and
(B4), and substituting the result back to E§1) yield

q
~920a/2_q
2%¢0g

q/2
} . (B9

Si(p,q)~G(p,q,a) (20 PTHI @ zad_ 1) = (BE)
where

ola=2p+2-p(p-1)aqli2
— P
G(p,q,a) 0o (1_272a)q/2(217aq_1)2\]'

In Eq. (B5), the assumption 2> 7 was used since we are
interested in finding the scaling in smallNote that depend-
ing on thep value, the exponent of the first term in E&5),
(J—p+1)(1-aq), varies from the largesti-1)(1— «q)

to the smallest 2(+ aq). Forp lies in the middle range, say
p~J/2, J-p+1)(1—aq)~(1+J/2)(1—aq). Using J
=15(~30 000 beats the factor multiplied tar*® is approxi-
mately £(1—aq). Thus, the first term in Eq(B5) can be
larger and forq<gq,, where I=aq,,
Sy(7,q) ~ 7.
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