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Robustness and perturbation in the modeled cascade heart rate variability
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Department of Mechanical, Aerospace and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada M5B 2K3
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In this study, numerical experiments are conducted to examine the robustness of using cascade to describe
the multifractal heart rate variability~HRV! by perturbing the hierarchical time scale structure and the multi-
plicative rule of the cascade. It is shown that a rigid structure of the multiple time scales is not essential for the
multifractal scaling in healthy HRV. So long as there exists a tree structure for the multiplication to take place,
a multifractal HRV and related properties can be captured by using the cascade. But the perturbation of the
multiplicative rule can lead to a qualitative change. In particular, a multifractal to monofractal HRV transition
can result after the product law is perturbed to an additive one at the fast time scale. We suggest that this
explains the similar HRV scaling transition in the parasympathetic nervous system blockade.

DOI: 10.1103/PhysRevE.67.031914 PACS number~s!: 87.19.Hh, 89.75.Da
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I. INTRODUCTION

The dynamics of the cardiovascular regulation is hig
irregular in most physiological conditions, a phenomen
commonly referred to as the heart rate variability~HRV!.
Captured in the interbeat time RR interval~RRi! ~interbeat
time is defined by the timespan of the successive R wave
the electrocardiogram!, HRV reveals mostly the fluctuating
autonomicity at the sinoatrial node. This fluctuation is b
lieved to give rise to afractal componentof HRV that con-
tributes to the 1/f -like RRi power spectrum@1–5#. Similar to
other 1/f phenomena in nature, the fractal component
HRV represents a very robust feature that has been obse
in different body positions@1,2#, the times of day@3#, and the
health conditions@2,4#. While its physiological origin and
purpose remain largely unknown, the fractal HRV has dra
much interest in recent years for a number of reasons. F
in healthy humans, the 1/f power can reach 70 to 90% of th
total RRi signal power@1,2,4#. Furthermore, experimenta
data suggest potential clinical relevance as a diminish
fractal component was found to correlate well with a high
mortality rate in certain heart disease conditions@2,4,6#. Al-
though such a correlation has only been systematically es
lished for short-term HRV, fractal scalings in long-term r
cordings (;105 beats) are known to be qualitative
different for healthy and diseased populations@7–10#.

Recent studies indicated that the scaling in healthy RR
in fact highly nonuniform. The possibility of a multifracta
HRV was thus raised@8–10#, and tested with encouragin
results by using discrete multiplicative random casca
@9,10#. Using the cascade to model heart rate regulation p
vides an interesting contrast to the general notion of fe
back which functions on the basis of additive law. A possi
explanation for this result is that complex biological fun
tions such as regulating the heart rate are achieved via
interaction of a large number of control mechanisms ove
wide range of scales. Hence, one or few isolated reflexes
not sufficient to capture the overall complexity. For examp
the reduction of baroreflex sensitivity and its recovery d
namics in prolong bed rest test exhibit qualitatively very d
ferent property from the long term HRV. Thus, barorefl
alone is insufficient to describe the complex HRV@14#. The
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encouraging result from the cascade model implies a mu
plicative interaction in the autonomic heart rate contro
Similar phenomenology in natural systems, such as tur
lence @15#, network traffic@16#, and market dynamics@17#
further suggests the product law may exist on a more gen
ground.

Autonomic nervous system blockade is sufficient to al
the multifractal HRV in a fundamental way. It was shown
multifractal to monofractal transition~MMFT! in the para-
sympathetic nervous system~PNS! blockade, but not in sym-
pathetic nervous system~SNS! blockade@11#; see also Ref.
@12#. Because of the health implication of reduced HRV, it
plausible MMFT may also describe the transition to he
disease in such pathologic state as congestive heart fa
where there is an elevated sympathetic drive and PNS w
drawal @2,4,13#.

To further the cascade theory of HRV, it is necessary
consider different model configurations and HRV in oth
physiological conditions. This paper presents the resea
results on these issues. Specifically, we focus on the rob
ness of multifractal and the cause of MMFT by perturbi
the cascade. There is a twofold objective for these invest
tions. The first is related to the proposition of cascade H
itself. Granted the product law is a logical framework b
which the multifractal HRV can be explained, discrete ca
cades are artificial in nature and lack the motivation in r
physical or physiological terms. The study of the robust m
tifractal generation is an attempt to address this mode
issue. Our goal is to relax the artificiality in cascade and
test the limit of using the cascade paradigm to describe H
Specifically, numerical experiments will be conducted to p
turb the hierarchical time scale structure and the multipli
tive rule of the cascade to test the persistence of multifra
scaling. We will show that the arrangement of the multip
time scales in the discrete random cascade is not an esse
factor. This result attests the omnipresence of multifrac
objects in diverse physical systems in general, and le
hope for the physical basis of cascade HRV in particular. T
study of the ‘‘unstable’’ multifractal generation leads to th
second objective of the numerical study; namely, finding
cause of MMFT in the context of cascade. We will show th
the random perturbations of the product rule into an addit
one is sufficient to cause MMFT. It supports the early su
©2003 The American Physical Society14-1
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gestion that an additive law manifested by one or a few fe
back mechanisms may not be sufficient to characterize c
plex biological functions such as regulating the heart rate

This paper is organized into four sections. In Sec. II,
provide an overview for cascade HRV. We will demonstra
how cascade parameters can be extracted from RRi and
pare the simulation results with experimental data. Cer
technical issues related to the estimation of multifractal w
also be addressed. In Sec. III, cascade perturbations are
ducted to test the persistence and destruction of multifrac
The concluding remarks are given in Sec. V.

II. CASCADE HRV

The structure of the discrete random cascade can ge
ally be put in the framework of positive martingale theo
@18#. For numerical study, the construction of the cascad
defined by three basic elements~a! the ~multiplicative! data
generation rule,~b! the probability law for the cascade com
ponent, and~c! the branching rule. The cascade HRV pr
poses that the fractal component of HRV is a result of
product ofJ11 random variablesv j which we call cascade
components

tJ~ t !5)
j 50

J

v j~ t !, ~1!

wherev j (t)511j j andj j , j 50,...,J are independent~in j!
random variables witĥj j&50, ^j jj j 8&5d j j 8s j

2 (d j j 8 is the
Kronecker delta!. Equation~1! defines the data generatio
rule ~a! and describes the mechanism for data fluctuation
the cascade. Gaussianv j (t)’s will be used through out this
study since the outcome of our results does not vary se
tively on this choice. Eachv j (t) is set to vary at the intege
times $tk

( j ) ,k, j PN%, v j (t)5v j (tk
( j )) for tk

( j )<t,tk11
( j ) . The

time sets$tk
( j )%, j 50,...,J, define the branching rule~c! and

the multiple time scales in the cascade.
The hypothesis of cascade HRV has led to an effec

modeling strategy for HRV. Assuming a Gaussianbounded
cascade with a dyadic branching ruletk

( j )5kd j , k50,...,2j

and d j52J2 j , HRV in health@9,10# and in autonomic ner-
vous system blockades@10# have been successfully simu
lated. Assuming a bounded cascade is based on the ele
physiology of the heart muscle cells, which dictates
bounded RRi. Lettings j5s022a( j 21);d j

a , j 51,...,J, as-
sures a boundedr J(t) in the J→` limit @10#; see also Ref.
@19#.

For largeJ, the estimation ofa can be made by the log
increment of the actual RRi datar (t): Dy(t,t)5 log2@r (t
1t)#2 log2@r (t)#. It can be shown that̂Dy(t,t)2&;t2a,
where the angle brackets denote the statistical average ot
~Appendix A!. Figure 1 shows the averagedA^Dy2& from
two databases: the first~DB1! consists of 10 sets of daytim
RRi recording of normal sinus rhythm from healthy you
adults and the second~DB2! consists of 18 sets of daytim
RRi of normal sinus rhythm downloaded from the pub
domain physionet@20#. A scaling range for the group
averaged^Dy2& is found in t.24 beats anda;0.126,
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log2(s0);21.6 ~the intercept of the regression line at th
largest t value! can be estimated. Using this method, t
generated cascade can mimic the experimental RRi prop
very well ~Fig. 2!. Note also from Fig. 1 that there appears
have a second range int,24 with the estimateda;0.43.
This value corresponds to a scaling exponent;1.86 for the
power law spectrum, which is close to that of a Browni
motion and which reminds us of the ‘‘cross-over’’ phenom
enon or double scaling in the literature of long-term HR
@7#.

The multifractal analysis of the dyadic cascade HRV w
conducted based on the moment of the absolute increm
For r j (t), we formedSJ(t,q)5^uDr J(t)uq&, whereDr J(t)
5r J(t1t)2r J(t) @9,10#. It can be shown thatSJ(t,q)
;tg(q) in larget whereg(q) is defined by

K U)
i 51

j

v i~ t !UqU )
i 5 j 11

J

v i~ t1t!2 )
i 5 j 11

J

v i~ t !UqL ;d j
g~q! .

~2!

If the variances j of the cascade component decays su
ciently fast, the cascade in higher generations is appr
mately additive. As a result, a second scaling can eme
from the model in smallt: SJ(t,q);taq ~Appendix B!.
Hence, the ‘‘cross-over’’ phenomenon mentioned above
be modeled by using two decay rates, i.e., for 1,p,J and
a1,a2 , one in 1< j <p with s j5s022a1( j 21) and one in
p, j <J with s j5s022a2( j 21) In this case,SJ(t,q);ta2q

for t<2p andSJ(t,q);tg(q) for t.2p ~Fig. 3!.

FIG. 1. log2(^Dy(r )2&0.5) vs log2(t) based on real RRi data from
DB1 ~h! and DB2~s!. The heavy solid line is the overall averag
The power law fors j is estimated witha50.126 and log2(s0)
521.6 ~at the intercept with they axis atJ515). The thin solid
line is the corresponding regression line given by 1
10.126 log2(t).
4-2
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For higher order momentq@1, the dyadic bounded cas
cade predictsSJ(t,q);t andz(q)51. However, this prop-
erty is difficult to verify from RRi due to the insufficient dat
length.

The estimatedz(q) allows further calculations of the mul
tifractal spectrum. Leth5z(q)85dz(q)/dq which measures
the so-called singularity strength. The ‘‘size’’ of the set
increments for a givena, or its Hausdorff dimensionD(h),
can be related toz(q) via a Legendre transform@21,22#

FIG. 2. Comparison between experimental and numericalz(q)
function and increment PDF.~a! log2(^Dy(t)2&0.5) vs log2(t) from a
typical data set in DB2~s! and the linear fit of the power law~2!:
log2(^Dy(t)2&0.5)522.520.13 log2(t). ~b! Experimental~s! and
numerical~2! z(q)s. ~c! Experimental~s! and numerical incre-
ment PDF~2! (n5Dr J or Dr !. For better comparison,f t(Dr ) is
rescaled horizontally and vertically by arbitrary factorsf 0 and 1/f 0 ,
respectively.~d! The multifractal spectrumD(h) of the experimen-
tal data „based on the Legendre transformD(h)5minq@qh2z(q)
11#…. The numerical result is averaged over 100 samples ofr J(t)
with log2(sj)522.520.13(j 21). Vertical bars atq51,...,5 show
the standard error of the statistic.
03191
D~h!5min
q

@qh2z~q!11#.

It is known, for monofractal, thatz(q)5qH describes a lin-
ear law and, for multifractal, a qualitatively different nonlin
earz(q) with z(q)9,0 results@23#. The typical multifractal
spectrum for daytime HRV of a healthy young adult is sho
in Fig. 2~c! for q.0. Notice the maximumD(h) is reached
for h;0.15.

To conclude this section, we would like to discuss so
technical issues related to usingSJ(t,q) for multifractal
analysis. In the context of fluid turbulence,SJ(t,q) is noth-
ing but the structure function of the absolute velocity inc
ment. Although it was widely used in the past, the struct
function is known to diverge forq,0 since the probability
at zero increment does not vanish. Moreover, as Muzyet al.
pointed out, the structure function approach is limited in t
range hP(0,h* ), where h* 512@12D(h* )#/D8(h* ),1
@21#. This upper bound exists when max@D(hm)# occurs at
some hm.1. If hm,1, the accessible range becomesh
P(0,1) for all q.0 if and only if there is no negative sin
gularity. If there exists aq* .0 whereh(q),0, q.q* , and
hm,1, the accessible range is further restricted toq,q*
„when z(q) begins to bend downward@dz(q)/dq,0#…. As
shown in Fig. 2~c!, the typical range for long-term HRV is
h,1. Then, the potential concern lies in the negativeh. We
did observeddz(q)/dq,0 in the higher order moments (q
.5) from some daytime RRi data, and more often in nig
time RRi. For this reason, the multifractal scaling in largeq
has not been resolved by using this approach in the
@9,10#. Nevertheless, the qualitative feature of a nonline
z(q) is already revealed for smallq andSJ(t,q) will be used
for the purpose of this study.

III. PERTURBED RANDOM CASCADE

Although the discrete cascade proposed in the past
been effective for modeling the fractal property of HRV, it
0.35.
FIG. 3. Doubling scaling ofSJ(t,q). ~a! log2(sj)521.620.126(j 21), 0, j <p and log2(sj)522.620.35(j 21), p, j <J and p59.
The solid lines show the slope of20.126 and20.35, respectively.~b! A typical SJ(t,q) and the two scaling intervals:I 15$t, log2(t)<7% and
I 25$t, log2(t).7%. ~c! z(q) estimated from scaling intervalI 1 ~s! andI 2 ~h!. They are averaged based on 100r J(t) simulated using thes j

described in~a!. The saturation ofz(q);1 estimated inI 1 ~s! is an effect of the bounded cascade. The solid line indicates the slope of
4-3
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D. C. LIN PHYSICAL REVIEW E 67, 031914 ~2003!
real physical and physiological terms. For example, hav
v j (t) fluctuating precisely at the dyadic times is certainly
artificial ‘‘constraint.’’ To test the robustness of the cascad
generated multifractal and MMFT, the elements~a! and ~c!
of the above are perturbed. The scaling of the perturbedr J(t)
will be examined by usingz(q). In what follows, the dyadic
cascade@ tk( j )5kd j # with a;0.126 and log2(s0);21.6 es-
timated from Fig. 1 will be used to generate thecontrol in all
comparisons.

A. Perturbation of the branching rule

In general, considert j5tk11
( j ) 2tk

( j ) . Figure 4~a! shows the
cascade configuration aftert j is perturbed using

t j5~0.51aU!d j , ~3!

where U is an uniformly distributed random variable i
~20.5, 0.5! and aP@0,1#. In the simulation, #$tk

( j )%52 j is
the same as the dyadic cascade. Also, the end points o
parent interval were kept in the offspring’s, i.e.,t2k

( j 11)5tk
( j )

@Fig. 4~a!#. This establishes the ‘‘standard’’ dyadic config
ration except the perturbed interval length. So,aÞ0 de-
scribes a random scale scenario. Thez(q)’s averaged from
100 samples ofr J(t) with a50.4,0.8 show qualitatively
similar shapes as the control~Fig. 5!. When plottingSJ(t,q)
versusSJ(t,p) against each other on the logarithmic scal
which is equivalent to assuming an extended self-simila
in the turbulence analogy of HRV@8#, a power law relation-
ship can again be found. The corresponding power law
ponentzq,p is given byz(p)/z(q). It is interesting to note

FIG. 4. Representative branching configurations for pertur
cascades. Only the firstj 50,1,...,5 are shown from bottom to to
~the 0th generation is the initial condition!: ~a! time scale (t j ) per-
turbation as described by Eq.~3!, ~b! mixed dyadic (C52) and
triadic (C53) branchings,~c! mixed-type branching with 25% o
$tk

( j )% coincides with those of the dyadic cascade, and~d! mixed-
type branching with 0% of$tk

( j )% coincides with those of the dyadi
cascade.
03191
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that the perturbedz(p,q)’s are almost indistinguishable from
the control~Fig. 6!. In a similar case studied by Falconer, th
multifractal spectrum was proven invariant for identica
distributed G( j )5@ f „r j 11(t)/r j (t)…,m(t j 11)/m(t j )# where
f (•) denotes the probability density function andm is the
Lebesgue measure of the Borel sets on the real line@24#. For
independentv j (t), the identicalG( j ) implies identically dis-
tributedv j (t). Arbeiter showed a similar result for the ran
dom scale perturbation by using gaussian distribution@25#.
The current results are differed from these past studies
cause the cascade componentsv j (t) in the bounded cascad
are not identically distributed.

In the branching rule perturbation, the intervals in neig
boring generations are met at the end points, i.e., for so
C.0, the common elements in$tk

( j )% and$tk8
( j 11)%:

tk8
~ j 11!

5tk
~ j ! ~4!

are determined byk85Ck. For example,C52 applies to the
dyadic cascade witht2k

( j 11)5tk
( j ) , k51,...,2j . Perturbations

on C implies a mixed branching rule where thek8, k in Eq.
~4! do not commit to any fixed relationship. Different pe
turbed configurations are considered in Figs. 4~b! and 4~c!.
Figure 4~b! describes a mixed dyadic and triadic branchi
rule. In this case,C52 andC53 are used in randomly se
lected intervals with prescribed probabilities~see Fig. 5 cap-
tion!. Figures 4~c! and 4~d! describe the more general case

d

FIG. 5. Scaling in the perturbed cascades with configurati
given in Fig. 4. Averagedz(q) based on Fig. 4~a! are shown ass
for a50.4 andD for a50.8 @see Eq.~1!#. Averagedz(q) based on
Fig. 4~b! are shown ash for 80% dyadic, 20% triadic branchings
and L for 50% dyadic, 50% triadic branchings. Averagedz(q)
based on Fig. 4~c! is shown as1. Averagedz(q) based on Fig. 4d
is shown as!. All z(q)’s are averaged from 100 samples ofr J(t)
using log2(sj)521.620.126(j 21) and J515. The control with
tk
( j )5kd j is shown as the solid line with one standard deviation.
4-4
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ROBUSTNESS AND PERTURBATION IN THE MODELED . . . PHYSICAL REVIEW E67, 031914 ~2003!
a randomCPN with only the constraintNj<b32 j , where
Nj5#$tk

( j )%. In this case, we are interested in perturbing
branching rule from the dyadic caseC52. Shown in Figs.
4~c! and 4~d! are the perturbed configurations with, respe
tively, 25 and 0 % of thetk

( j ) remaining at the branch point
of the dyadic cascade (C52 andb53). Averagedz(q),s
in these cases again show similar shapes as the control~Figs.
5 and 6!. It is thus evident that a stable multifractal gene
tion persists regardless of the branching rule perturbation
long as some type of branching mechanism exists to pro
the structure for multiplication. Clearly, the branching ru
perturbation is not sufficient for MMFT.

B. Perturbation of the product rule

Replacing the multiplicative rule@~c! above# by an addi-
tive one can typically lead to the fractal transition reported
HRV under autonomic blockade. Such a perturbation is m
tivated by the conjecture that feedbacks using additive
are not sufficient to describe the integration of a large nu
ber of controls in the autonomic heart rate regulation. It
further motivated by the fact that addingv j (t) with decaying
variance on the dyadic tree can lead to monofractal sca
@9#. To perturb the product rule, Eq.~1! is replaced by

r j~ t !5r j 21~ t !1v j~ t ! ~5!

for t in randomly selected subset of$tk
( j )%. This is conducted

by first making a random drawB uniformly in @1# to deter-
mine such random intervals. The multiplicative rule~1! is
applied if the criterionB.D is satisfied, otherwise, Eq.~5! is
used. We tested three cases: uniform perturbation~UP! with
a constantD5D0 @Fig. 7~a!#, small scale perturbation~SSP!
with D5D0 j , where the criterion is less likely passed f

FIG. 6. Normalizedzq,35z(q)/z(3) for all cases shown in Fig
5. Notice the similar curvatures in all cases.
03191
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largej in the higher generation of the cascade@Fig. 7~b!#, and
large scale perturbation~LSP! with D5D0(J2 j ), where the
criterion is less likely passed for smallj in the lower genera-
tion of the cascade@Fig. 7~c!#.

Since the purpose for the branching rule of the cascad
to provide the structure for the multiplication, it is indirect
perturbed by Eq.~5!. As a result, the branching process fro
one generation to the next can be viewed as contain
‘‘holes’’ wherein the product rule does not apply. Thev j (t)
used in Eq.~5! has mainly the purpose to introduce a noi
term in the additive process. Using the samev j (t) helps to
make an easier comparison with the control. Other unco
lated gaussian noise will lead to qualitatively similar resu
given below.

For UP and SSP, the perturbedz(q) and zq,3
5z(q)/z(3) are given in Figs. 8 and 9, respectively. It
evident that a linear trend ofz(q) can be developed by th
product rule perturbation, which implies MMFT. A close
look indicates the cause of this qualitative change lies in
perturbation of the product rule in the fast time scale. F
SSP, a linearz(q) is clearly seen. For UP, increasingD0 also
results in az(q) of a smaller curvature~more linear!. How-

FIG. 7. Representative cascade configurations for perturbed
generation rule. Only the firstj 50,...,8 generations are shown from
bottom to top~the 0th generation is the initial condition!. ~a! UP, ~b!
SSP, and~c! LSP; see text for more details. Only the intervals whe
the multiplicative data generation rule~1! is used are shown.
4-5
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ever, for LSP, the perturbedz(q) is nonlinear in shape and i
qualitatively similar to the control~Fig. 8!. The MMFT ob-
served in PNS blockade and minor deviation of the H
scaling in SNS blockade are consistent to the current find

FIG. 8. Scaling in dyadic cascades with perturbed data gen
tion rule described in Fig. 7; see also Eq.~5! in text. ~a! z(q) for
UP, D050.05 ~— 1 —!, D050.3 ~— ! —!; z(q) for SSP, D0

50.03~—D—!; z(q) for LSP,D050.03~s!. The control is shown
as the heavy line with one standard deviation. Allz(q) are averaged
from 100 samples ofr J(t) using tk

( j )5kd j , log2(sj)521.6
20.126(j 21) and J515. Also shown is the SSP forD050.03
~— h —! using log2(sj)520.2520.3(j 21) andJ515.

FIG. 9. Normalizedzq,35z(q)/z(3) for all cases shown in Fig
8. Notice the similar curvatures in all cases.
03191
g,

since PNS and SNS can be characterized by the fast and
dynamics in the RRi fluctuation@2,4,11#. It implies, in the
framework of bounded cascade, that MMFT is likely caus
by the perturbation of the data generation rule from a mu
plicative to an additive one.

IV. CONCLUSION

In this study, we showed that multifractal scaling is
robust feature and can be generated by using fairly gen
types of branching process. Qualitatively change can re
from perturbing the multiplicative data generation rule in
an additive one. MMFT in HRV under PNS blockade w
successfully reproduced by this perturbation. We showed
the past that the hierarchical time scale structure of the
cade provides a consistent framework to model the PNS
SNS influences on HRV@10#. As a result, MMFT has also
been simulated by ‘‘turning off’’ the small time scale gener
tions of the cascade. It was found, on the dyadic times,
the construction of such a truncated cascade mimics that
Brownian particle’s, which is known to exhibit monofract
scaling. The random perturbation studied in Eq.~5! repre-
sents a more general scenario leading to MMFT.

In a series of papers, Carlson and Doyle~CD! developed
a new theory for the so-called complex system@26#. These
authors examined a wide range of physical, biological, a
engineering systems and observed that the so-called com
systems are heterogeneous in nature and often exhibit ro
feature in the ‘‘design-for’’ environment. Such systems c
be fragile under unanticipated perturbation. The emphase
the weakness and ‘‘design’’ of complex systems sepa
CD’s complexity theory from ideas in statistical physics. T
break-down of the robustness was suggested as ‘‘de
flaw’’ which may be due to a biased training process in t
evolution. Introducing heterogeneity to cascade via
branching rule perturbation brings the cascade HRV mo
closer to CD’s complex systems. A robust multifractal ge
eration under the branching rule perturbation suggest
similar type of robustness observed in other complex s
tems. If this comparison is correct, PNS blockade and
health implication due to ‘‘weakening’’ HRV@12,13# should
indicate a ‘‘design flaw’’ in the human cardiovascular sy
tem. We hope the current study could provide the motivat
for interdisciplinary efforts to further the understanding
HRV.
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APPENDIX A

To extract a, we focus on the time averaged statisti
since an ensemble average is hard to define in practice
first define the log incrementyJ(t,t)5 log2@rJ(t1t)#
2log2@rJ(t)# for integerst, t. Assuming dyadic scale and le
t5dk , the pth order moment ofyJ (p.0) is given by

a-
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mdk

~p!;
1

N (
t

yJ~dk ,t !p5
1

N (
t

F(
j

r j~dk ,t !G p

, ~A1!

where

r j~dk ,t !5 log2S v j~ t1dk!

v j~ t ! D . ~A2!

Note thatr(dk ,t) can vanish depending on the values oft,
dk and j. Let Tk

( j )5$t;v j (t1dk)Þv j (t)%. It can be shown
thatTk

( j ) consists of disjoint segments, each associated wi
different r(dk ,t) value. For a givenk, it can be shownTk

( j )

for j <k consists of 2j21 such segments, each of whic
containsdk points, andTk

( j ) for j .k consists of 2j22 j 2k

segments, each of which containsd j points. Thus,uTk
( j )u

5(2 j21)3dk for j <k and (2j22 j 2k)3d j for j .k.
The second moment of the log-increment process is

ficient to provide the first order approximation ofa. Since
j j ’s are normal random variables with zero mean a
^j jj j&5d i j s j , the contribution from thej th cascade compo
nent to the second moment can be written as

1

N (
t51

N

@r j~dk ,t !#25
1

N (
tPTk

~ j !
@r j~dk ,t !#2

;
uTk

~ j !u
N K F log2S 11j j8

11j j
D G2L . ~A3!

Substituting Eq.~A3! anduTk
( j )u into ~A1! and retaining only

the second order terms, one has

mdk

~2!;2(
j

uTk
~ j !u

N
s j

25
s0

2

2k21 F2~122uk!

D1
2

12222ak

D2

1~2k21!
222ak2222aJ

D2
G , ~A4!

whereu5122a, D15122u, andD2512222a. It can be
seen thatD1→21, D2→0 as a→0. Hence, for smalla,
D2 /D1;0. Now, assuming 2J@dk@1, it can be shown
mdk

(2);dk
2a , which impliesa can be estimated by linear re

gression in the middle range scales.

APPENDIX B

The power lawSJ(t,q) of the dyadic bounded cascad
has been shown in the past based on the variance laws j
ar
.

.

03191
a

f-

d

5s02
2a(j21) @8#. In general, it can be written

SJ~t,q!5 (
n50

J2n21

Pn^uDvnuq&, ~B1!

wherePn52nt/(2J2t), t52n and ^uDvnuq& is defined by
Eq. ~2!. The power law scaling in Eq.~B1! only holds for
large t @9#. The purpose of this Appendix is to show that
second scaling will emerge in smallt if the variances j
decays sufficiently fast. As a result, if there are two dec
rates fors j , the dyadic cascade is able to exhibit doub
scaling observed insomeexperimental data@7#.

Considering s j!0 for j >p and 1,p,J, it can be
shown that

uDvnuq;U)
j 51

p21

v jUqU (
j 5n11

J

Dj jUq

. ~B2!

For independentv j ’s,

K U)
j 51

p21

v jUqL ;s0
~p21!q22~p21!~p22!aq/2 ~B3!

and

K U (
j 5n11

J

Dj jUqL ;2q/2s0
qF222an2222aJ

12222a Gq/2

. ~B4!

Taking the statistical average of Eq.~B2! with Eqs.~B3! and
~B4!, and substituting the result back to Eq.~B1! yield

SJ~r,q!;G~p,q,a!~2~J2p11!~12aq!taq2t!, ~B5!

where

G~p,q,a!5s0
pq 2@q22p122p~p21!aq#/2

~12222a!q/2~212aq21!2J .

In Eq. ~B5!, the assumption 2J@t was used since we ar
interested in finding the scaling in smallt. Note that depend-
ing on thep value, the exponent of the first term in Eq.~B5!,
(J2p11)(12aq), varies from the largest (J21)(12aq)
to the smallest 2(12aq). Forp lies in the middle range, say
p;J/2, (J2p11)(12aq);(11J/2)(12aq). Using J
515 ~;30 000 beats!, the factor multiplied totaq is approxi-
mately 28(12aq). Thus, the first term in Eq.~B5! can be
significantly larger and for q,q* , where 15aq* ,
SJ(t,q);taq.
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